- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Schnell, Christian (4)
-
Bakker, Benjamin (1)
-
Bhatt, Bhargav (1)
-
Grimm, Thomas W. (1)
-
Hacon, Christopher (1)
-
Kebekus, Stefan (1)
-
Popa, Mihnea (1)
-
Scholze, Peter (1)
-
Tsimerman, Jacob (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We generalize the finiteness theorem for the locus of Hodge classes withfixed self-intersection number, due to Cattani, Deligne, and Kaplan, from Hodgeclasses to self-dual classes. The proof uses the definability of periodmappings in the o-minimal structure $$\mathbb{R}_{\mathrm{an},\exp}$$.more » « less
-
Kebekus, Stefan; Schnell, Christian (, Journal of the American Mathematical Society)null (Ed.)We investigate under what conditions holomorphic forms defined on the regular locus of a reduced complex space extend to holomorphic (or logarithmic) forms on a resolution of singularities. We give a simple necessary and sufficient condition for this, whose proof relies on the Decomposition Theorem and Saito’s theory of mixed Hodge modules. We use it to generalize the theorem of Greb-Kebekus-Kovács-Peternell to complex spaces with rational singularities, and to prove the existence of a functorial pull-back for reflexive differentials on such spaces. We also use our methods to settle the “local vanishing conjecture” proposed by Mustaţă, Olano, and Popa.more » « less
-
Bhatt, Bhargav; Schnell, Christian; Scholze, Peter (, Selecta Mathematica)
-
Hacon, Christopher; Popa, Mihnea; Schnell, Christian (, Local and global methods in algebraic geometry)
An official website of the United States government
